Name of Partners: Yohance Matsimela, Parbatie Ramgoolie

Experiment 08

TITLE: Determination of Partition coefficient of acetic acid between n-butyl alcohol and water.

OBJECTIVE: To determine the partition coefficient of acetic acid between n-butyl alcohol and water.

THEORY/PRINCIPLES: In dilute solution at constant temperature a solute which exists in the same molecular species in two immiscible solvents will distribute itself between the two solvents in accordance with the PARTITION LAW.

The partition coefficient = k

$$k = \frac{C_1}{C_2}$$

where C_1 = concentration of acetic acid in water

C₂ = concentration of acetic acid in n-butyl alcohol

k is an equilibrium constant known as the partition coefficient. It is independent of the

amount of solute taken, as well as the volume of solvent used.

k is the ratio of concentrations, and not the ratio of masses of solute.

The partition coefficient (k) is constant providing:

1) Temperature constant

2) Solvents are immiscible and do not react with each other.

3) The solute does not react, associate or dissociate in the solvents.

PROCEDURE:

- 1) Approximately 200 mL of distilled water was boiled in a beaker for ten minutes.
- The CO₂ free water was poured into a flask, and the flask was stoppered lightly and cooled
- About 70 mL of 2M acetic acid was placed in a 200 mL glass stoppered bottle and 50 mL of n-butyl alcohol was added to it.
- 4) The bottle was stoppered and its contents were shaken for at least a minute
- 5) The liquid layers were allowed to separate and the temperature of the mixture was recorded.
- The pipette was rinsed by sucking up a little of the solution and then discarding it.
- A 25 mL pipette was inserted into the flask and 25 mL aliquot of the upper alcohol layer was carefully withdrawn.
- 8) The solution was pipetted into a second glass stoppered bottle and approximately an equal volume of boiled distilled water was added.
- 9) The bottle was shaken thoroughly in order for acid to be transferred to the water layer
- 10) About 3 drops of phenolphthalein indicator was added to the contents of the bottle.
- 11) A clean, dry burette was filled with 1.0 M NaOH
- 12) The bottle was stoppered and the contents were titrated with 1.0 M NaOH, while being vigorously shaken. The titration was continued until a first permanent pink colour was observed.
- 13) The results obtained were recorded.
- 14) Another 25 mL pipette was rinsed with solution by pipetting a small volume of the lower aqueous layer and then discarding it.
- 15) 25 mL aliquot of the lower aqueous layer of the first bottle was pipetted into a flask
- 16) About 3 drops of phenolphthalein indicator was added to the solution in the flask.

- 17) The burette was refilled with NaOH
- 18) The contents of the flask was titrated with the NaOH and the results were recorded
- 19) About 25 mL of the fresh butanol and boiled distilled water was added to the original mixture which contained 50 mL n-butyl alcohol.
- 20) The procedure above (steps 1 through 18) was repeated for the new solution.

OBSERVATIONS:

When the phenolphthalein indicator was added to the solution in the flask it remained clear. On titration with the NaOH the solution changed colour from clear to a light pink colour.

RESULTS:

Temperature of mixture = 25° C

- 25 mL of water + 25 mL of upper layer Titration with NaOH Final Volume (mL) = 32.5 mL Initial Volume (mL) = 0.00 mL Volume used (mL) = 32.5 mL
- 2) 25 mL of lower layer Titration with NaOH
 Final Volume (mL) = 27.00 mL
 Initial Volume (mL) = 0.00 mL
 Volume used (mL) = 27.00 mL

Given Sample 2:25 mL of upper layer + water25mL of lower layerFinal volume = 18.40 mLFinal Volume (mL) = 15.70 mLInitial volume = 0.00 mLInitial volume = 0.00 mLVolume used = 18.40 mLVolume used = 15.70 mL

Table 1: Result of concentration and partition coefficinet vlaues for water and alcohol

Alcohol Layer		Water Layer		Alkali for titration (mL)		
Sample Removed	Fresh Alcohol added	Sample Removed	Water added	Water	Alcohol	$k = C_1/C_2$
(mL)	(mL)	(mL)	(mL)	C_1	C ₂	
25	-	25	-	1.08	1.30	0.831
-	25	-	25			
25	-	25	-	0.628	0.736	0.853

DISCUSSION:

The values obtained for the partition coefficient, k were 0.831 and 0.853 respectively, a difference of 0.022. The small difference in values could be attributed to an experimental error/s, as well as the abnormal distribution of the acetic acid between the two solvents. **EXERCISES:**

- 1) Solution containing 70 mL of 2M acetic acid and 50 mL of n-butyl alcohol.
 - <u>Upper Layer C2</u>

1.0 M NaOH was used 1000 mL contains 1.0 moles NaOH 32.5 mL contains $\frac{1}{1000} \times 32.5 = 0.0325$ moles NaOH NaOH + CH₃COOH \rightarrow CH₃COO⁻Na⁺ + H₂O 1 mole NaOH reacts with 1 mole CH₃COOH 0.0325 moles NaOH reacts with 0.0325 moles CH₃COOH 25 mL contains 0.0325 moles CH₃COOH 1000 mL contains $\frac{0.0325}{25} \times 1000 = 1.3$ moles CH₃COOH therefore, C₂ concentration = 1.3 mol L⁻¹ • Lower Layer – C1

1.0 M NaOH was used

1000 mL contains 1.0 moles NaOH

27 mL contains $\frac{1.0}{1000} \times \frac{27}{1} = 0.027$ moles NaOH

By the partition law acid must distribute itself equally between two phases,

 $NaOH + CH_3COOH \rightarrow CH_3COO^-Na^+ + H_2O$

therefore, ratio is 1:1

1 mole NaOH reacts with 1 mole CH₃COOH

0.027 moles NaOH reacts with 0.027 moles of CH₃COOH

25 mL contains 0.027 moles CH₃COOH

1000 mL contains $\frac{0.027}{25} \times 1000 = 1.08$ moles

therefore, C_1 concentration is 1.08 mol L^{-1}

k = partition coefficient = $\frac{C_1}{C_2} = \frac{1.08}{1.3} = 0.831$

- Solution #2 Containing the remainder of solution 1 (70 mL acetic acid and 50 mL n butyl alcohol), plus n-butanol (25 mL) and water.
 - <u>Upper Layer : C</u>₂

1.0 M NaOH was used 1000 mL cointains 1.0 moles NaOH 18.4 mL contains $\frac{1}{1000} \times \frac{18.4}{1} = 0.0184$ moles NaOH NaOH + CH₃COOH \rightarrow CH₃COO-Na⁺ + H₂O 1 mole NaOH reacts with 1 mole CH₃COOH 0.0184 moles NaOH reacts with 0.0184 moles CH₃COOH 25 mL contains 0.0184 moles CH₃COOH Therefore, C₂ concentration = 0.736 mol L⁻¹ • Lower Layer: C1

1.0 M NaOH was used 1000 mL cointains 1.0 moles NaOH 15.7 mL contains $\frac{1}{1000} \times 15.7 = 0.0157$ moles NaOH

By partition law, acid must distribute itself evenly between the two phases.

 $NaOH + CH_3COOH \rightarrow CH_3COO^-Na^+ + H_2O$

therefore, ratio is 1:1

1 mole NaOH reacts with 1 mole CH₃COOH 0.0157 moles NaOH reacts with 0.0157 moles of CH₃COOH

25 mL contains 0.0157 moles of CH₃COOH 1000 mL contains $\frac{0.0157}{25} \times 1000 = 0.628$ moles CH₃COOH therefore, C₁ = 0.628 mol L⁻¹ k = partition coefficient = $\frac{C_1}{C_2} = \frac{0.628}{0.736} = 0.853$